

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 7233-7235

An efficient solvent free catalytic oxidation of sulfides to sulfoxides with hydrogen peroxide catalyzed by a binaphthyl-bridged Schiff base titanium complex

Margherita De Rosa, Marina Lamberti, Claudio Pellecchia, Arrigo Scettri, Rosaria Villano and Annunziata Soriente*

Dipartimento di Chimica, Università degli Studi di Salerno, via S. Allende, I-84081 Baronissi, Salerno, Italy

Received 23 June 2006; revised 24 July 2006; accepted 25 July 2006 Available online 22 August 2006

Abstract—A titanium binaphthyl-bridged Schiff base complex proved to be an efficient catalyst for the hydrogen peroxide oxidation of aromatic and aliphatic sulfides to the corresponding sulfoxides in satisfactory yields under solvent-free conditions. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The oxidation of sulfides is the major method for the synthesis of sulfoxides which are versatile intermediates in organic synthesis (usable for C–C bond formation¹ and functional group transformations²) and are useful for the preparation of biologically and medically important compounds.³

Although many reagents are available for the oxidation of sulfides to sulfoxides,⁴ the catalytic processes with environmentally benign oxidants have become increasingly important.

Apart from molecular oxygen, recently, hydrogen peroxide has been a very attractive 'green oxidant' offering the advantages that it is cheap, environmentally benign, readily available and produces only water as a by-product.⁵ Nevertheless, hydrogen peroxide alone has to be used carefully due to the possibility of an over-oxidation reaction.⁶

Many catalysts have been specifically developed for hydrogen peroxide: tungsten catalyst systems,⁷ a dinuclear iron complex,⁸ a tungsten catalyst coupled with an acidic phase-transfer catalyst under organic solvent

0040-4039/\$ - see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.07.133

and halogen-free conditions,⁹ an iron tetrakis-(pentafluorophenyl)-porphyrin complex,¹⁰ HPA having Keggin structure,¹¹ a silica-based tungstate interphase catalyst.¹² A variety of Mt-(salen) complexes^{13–15} are able to catalyze the asymmetric oxidation of sulfides to sufoxides with hydrogen peroxide, as the terminal oxidant, but a drawback of these convenient methods is often the use of chlorohydrocarbon solvents or anhydrous H_2O_2 in ethanol⁶ and the over-oxidation to sulfones as side products.

Recently, we became interested in the use of titanium (salen)-catalysts in oxidation reactions and we reported the preparation and the characterization of a new octahedral titanium complex bearing a bulky binaphthylbridged Schiff base ligand (*rac*-1, Fig. 1) and we showed that the C_1 -symmetric *cis*- β isomer is preferentially formed.¹⁶

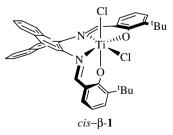


Figure 1. The titanium binaphthyl-bridged Schiff base complex 1.

Keywords: Salen ligands; Ti(IV) complexes; Sulfoxidation; Hydrogen peroxide; Sulfoxide; Oxidation.

^{*} Corresponding author. Tel.: +39 89965372; fax: +39 89965296; e-mail: titti@unisa.it

Table 1. Oxidation of methyl p-tolyl sulfide using 30% aqueous H_2O_2 catalyzed by 1

Entry	Catalyst (mol %)	Reaction time (min)/T (°C)	Yield of Sulfoxide (%)	Yield of Sulfone (%)
1 ^a	1	1200/rt	60	10
2	1	15/rt	80	12
3	_	180/rt	39	
4	0.5	15/rt	82	12
5	0.5	120/4	72	4
6	0.5	360/4	92	8

 $^{a}\,CH_{2}Cl_{2}$ was used as the solvent in the reaction.

We also reported some preliminary results concerning its catalytic activity in the epoxidation of allylic alcohols: the epoxyalcohols were obtained in very high regio and chemoselective way by the MW exposure of the mixture in solvent free-conditions.¹⁶

In the present work we wish to report an efficient, solventless protocol in which H_2O_2 has been used as the oxidizing agent in the presence of the complex 1 for the chemoselective oxidation of sulfides to their sulfoxides in high chemical yield and short reaction times.

Initially, we performed a set of preliminary experiments on methyl *p*-tolyl sulfide as a model substrate using 30%aqueous hydrogen peroxide in the presence of a catalytic amount of **1** at room temperature under solvent free conditions. The results are depicted in Table 1.

The reaction was initially carried out in CH_2Cl_2 (entry 1) using 1% mol of catalyst and produced the sulfoxide in 60% yield while, interestingly, under solvent free conditions (entry 2), methyl *p*-tolyl sulfoxide was obtained in 80% yield and sulfone in 12% yield after only 15 min. A reduction of catalyst loading (entry 4) did not cause a lowering of yield and chemoselectivity. It is noteworthy that in a blank experiment (entry 3), no significant oxidation was observed under similar reaction conditions in the absence of 1, and only a low conversion was observed in the presence of 2 equiv of H_2O_2 after prolonged reaction times.

In order to improve the chemoselectivity, the reaction was carried out at the lower temperature of 4 °C and under these conditions the sulfoxide was isolated in higher yield simply by prolonging the reaction time (entries 5 and 6) while the occurrence of the process of over-oxidation to sulfone was reduced in a not negligible way.

To study the scope of this procedure, a series of various substituted sulfides including alkyl aryl sulfides and dialkyl sulfides was reacted according to optimized reaction conditions (Table 2).

The results are reported in Table 2: it can be observed that in the series of methyl aryl sulfides (Table 2, entries 1-5) the yields of sulfoxide are high and the electronic nature and the position of the substituents have a minimal effect on the efficiency of the reaction, although the presence of a nitro group on the aromatic ring required longer reaction time to obtain comparable efficiency

Table 2. Oxidation with 30% aqueous $\mathrm{H_2O_2}$ of sulfides to sulfoxides catalyzed by 1

$B^{1} \xrightarrow{S} B^{2} \xrightarrow{H_{2}O_{2}} (1 \text{ eq.}), 1 (0.5 \text{ mol } \%) \xrightarrow{B^{1} \xrightarrow{S} B^{2}} B^{2}$							
	2	solvent free		9	3		
Entry	R^1	R ²	Time (min)	Yield of sulfoxide (%)	Yield of sulfone (%)		
1	o-(MeO)C ₆ H ₄	Me	15	95	2		
2	p-(MeO)C ₆ H ₄	Me	15	86	8		
3	p-ClC ₆ H ₄	Me	15	77	11		
4	$p-(NO_2)C_6H_4$	Me	15	39	3		
5	$p-(NO_2)C_6H_4$	Me	120	74	4		
6	Me(CH ₂) ₇	Me	15	83	13		
7 ^a	S S		15	68	_		

^a Diastereoselectivity *trans/cis* 98/2 determined by ¹H NMR analysis (400 MHz) on the crude reaction mixture.

(cfr. entries 4 and 5). As shown in entry 6, the catalyst 1 under the same reaction conditions is also effective in the oxidation of a dialkyl sulfide affording the corresponding sulfoxide in excellent yield and in a very short time. At last, when the reaction was performed on the cyclic thioacetal (entry 7), an exclusive process of monosulfoxidation was found to take place with high level of *trans*-diastereoselectivity.

In conclusion, the results reported in this letter clearly indicate that using as low as 0.5% mol of catalyst **1** it is possible to obtain a mild and chemoselective synthesis of sulfoxides from both aromatic and aliphatic sulfides. The procedure is solvent-free and requires 1 equiv of benign oxidant H₂O₂. Lastly, very short reaction times are needed to obtain a high yield of sulfoxides.

2. Catalyst preparation

The catalyst 1 was prepared as reported in Ref. 16.

3. General procedure for the oxidation of sulfides to sulfoxides

A 30% hydrogen peroxide solution (1 equiv, 1 mmol) was added to a vial containing the sulfide 2 (1 mmol) and complex 1 (0.5%, 0.005 mmol). After stirring at room temperature for the reported time, 10% solution of Na₂SO₃ (2 ml) was added. The mixture was extracted with AcOEt and the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The remaining oil was purified by chromatography on silica gel (Etp/AcOEt 1/1 v/v).

Acknowledgements

This work was supported by the Italian Ministry of Education (MIUR).

References and notes

- (a) Careno, M. C.; Ribagorda, M.; Poster, G. H. Angew. Chem., Int. Ed. 2002, 41, 2753; (b) Marino, J. P.; Mcclure, M. S.; Holub, D. P.; Comasseto, J. V.; Tucci, F. C. J. Am. Chem. Soc. 2002, 124, 1664; (c) Acocella, M. R.; De Rosa, M.; Massa, A.; Palombi, L.; Villano, R.; Scettri, A. Tetrahedron 2005, 61, 4091; (d) Massa, A.; Malkov, A. V.; Kocovsky, P. Tetrahedron Lett. 2001, 42, 7147.
- (a) Braverman, S. In *The Chemistry of Sulfones and Sulfoxides*; Patai, S., Rappoport, Z., Stirling, C., Eds.; Wiley: Chichester, 1988; p 717; (b) Trost, B. M. *Chem. Rev.* 1978, 78, 363.
- (a) Organosulfur Chemistry I; Page, P. C. B., Ed.; Springer: Berlin, 1999; (b) Metzner, P.; Thuillier, A. In Sulfur Reagents in Organic Synthesis; Academic Press: London, 1994.
- 4. (a) Mohammadpoor-Baltork, I.; Memarian, H. R.; Bahrami, K. Can. J. Chem./Rev. 2005, 83, 115-121; (b) Shukla, V. G.; Salgaonkar, P. D.; Akamanchi, K. G. J. Org. Chem. 2003, 68, 5422; (c) Hajipour, A. R.; Mallakpour, S. E.; Adibi, H. J. Org. Chem. 2002, 67, 8666; (d) Kropp, P. J.; Breton, G. W.; Fields, J. D.; Tung, J. C.; Loomis, B. R. J. Am. Chem. Soc. 2000, 122, 4280; (e) Tohma, H.; Takizawa, S.; Watanabe, H.; Fukuoka, Y.; Maegawa, T.; Kita, Y. J. Org. Chem. 1999, 64, 3519; (f) Martin, S. E.; Rossi, L. I. Tetrahedron Lett. 2001, 42, 7147; (g) Pelotier, B.; Anson, M. S.; Campbell, I. B.; Macdonald, S. J. F.; Priem, G.; Jackson, R. F. W. Synlett 2002, 1055; (h) Sharipov, A. K. Russ. J. Appl. Chem. 2003, 76, 108; (i) Firouzabadi, H.; Seddighi, M. Synth. Commun. 1991, 21, 211; (j) Firouzabadi, H.; Sardarian, A. R.; Badparva, H. Bull. Chem. Soc. Jpn. 1996, 69, 685; (k) Greenhalgh, A. P. Synlett 1992, 235; (1) Ali, M. H.; Stevens, W. C. Synthesis 1997, 764; (m) Ali, M. H.; Bohnert, G. J. Synthesis 1998, 1238; (n) Varma, R. S.; Dahiya, R. Synth. Commun. 1998, 28, 4087; (o) Iranpoor, N.; Firouzabadi, H.; Pourali, A. R. Synlett 2004, 347; (p) Colonna, S.; Manfredi, A.; Spadoni, M.; Casella, L.; Gullotti, M. J. Chem. Soc., Perkin Trans. 1987, 1, 71-73.
- (a) Kaczorowska, K.; Kolarska, Z.; Mitka, K.; Kowalski, P. Tetrahedron 2005, 61, 8315; (b) Jones, C. W. Applications of hydrogen Peroxide and Derivatives; Royal Society of Chemistry: Cambridge, 1999; (c) Anastas, P. T.;

Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, 1998; (d) Green Chemical Syntheses and Processes: Recent Advances in Chemical Processing; Anastas, P. T., Heine, L. G., Williamson, T. C., Eds.; ACS: Ohio, 2001; (e) Tundo, P.; Anastas, P.; Black, D. S.; Breen, J.; Collins, T.; Memoli, S.; Miyamoto, J.; Polyakoff, M.; Tumas, W. Pure Appl. Chem. **2000**, 72, 1207.

- 6. Noyori, R.; Aoki, M.; Sato, K. Chem. Commun. 2003, 1977.
- (a) Schultz, H. S.; Freyermuth, H. B.; Buc, S. R. J. Org. Chem. 1963, 28, 1140; (b) Ishii, Y.; Tanaka, H.; Nisiyama, Y. Chem. Lett. 1994, 1; (c) Stec, Z.; Zawadiak, J.; Skibinski, A.; Pastuch, G. Pol. J. Chem. 1996, 70, 1121; (d) Neumann, R.; Juwiler, D. Tetrahedron 1996, 52, 8781; (e) Gresley, N. M.; Griffth, W. P.; Laemmel, A. C.; Nogueira, H. I. S.; Parkin, B. C. J. Mol. Catal. 1997, 117, 185; (f) Collins, F. M.; Lucy, A. R.; Sharp, C. J. Mol. Catal. 1997, 117, 397; (g) Adam, W.; Mitchell, C. M.; Saha-Moeller, C. R. Tetrahedron 1994, 50, 13121; (h) Yamazaki, S. Bull. Chem. Soc. Jpn. 1996, 69, 2955; (i) Reich, H. J.; Chow, F.; Peake, S. L. Synthesis 1978, 299; (j) Phan, T. D.; Kinch, A.; Baker, J. E.; Ren, T. Tetrahedron Lett. 2005, 46, 397.
- Mekmouche, Y.; Hummel, H.; Ho, R. Y. N.; Que, L., Jr.; Schunemann, V.; Thomas, F.; Trautwein, A. X.; Lebrun, C.; Gorgy, K.; Leprete, J.-C.; Collomb, M.-N.; Deronzier, A.; Fontecave, M.; Menage, S. *Chem. Eur. J.* 2002, *8*, 1196.
- Sato, K.; Hyodo, M.; Zheng, X.-Qi; Noyori, R. Tetrahedron 2001, 57, 2469.
- Baiocchi, E.; Gerini, M. F.; Lapi, A. J. Org. Chem. 2004, 69, 3586.
- 11. Romanelli, G.; Vàzquez, P. G.; Tundo, P. Synlett 2005, 1, 75.
- Karimi, B.; Ghoreishi-Nezhad, M.; Clark, J. H. Org. Lett. 2005, 7, 625.
- 13. Palucki, M.; Hanson, P.; Jacobsen, E. N. *Tetrahedron Lett.* **1992**, *33*, 71114.
- 14. Bolm, C.; Bienewald, F. Synlett 1998, 1327.
- 15. Jeong, Y.-C.; Choi, S.; Hwang, Y. D.; Ahn, K.-H. *Tetrahedron Lett.* **2004**, *45*, 9249.
- Soriente, A.; De Rosa, M.; Lamberti, M.; Tedesco, C.; Scettri, A.; Pellecchia, C. J. Mol. Catal. A: Chem. 2005, 235, 253.